
Extensions: Sharing
Code and Data

CS193W - Spring 2016 - Lecture 6

Sandboxing

• Malicious apps cannot access resources outside
their sandbox.

Sandboxed Content

Read-only

Read/write

Read/write

App Extensions

• App Extensions (e.g. Apple Watch applications)
allow an app to extend the functionality of other
apps

• They do this while keeping apps sandboxed.
Communication occurs via an Extension Context.

Today Widgets

Share Extensions

Action Extensions

Photo Editors

Document Providers

Custom Keyboards

Extensions are not Apps

• Do not have application lifecycle events.

• They do not have application delegates or
application lifecycle events.

Some APIs are unavailable
to App Extensions

• There is no sharedApplication object (i.e. no App
Delegate)

• Cannot access the camera or microphone of the
iOS device

• Cannot perform long-running background tasks

• Cannot access APIs marked
NS_EXTENSION_UNAVAILABLE (HealthKit,
EventKit, etc.)

Application Structure

Sharing Data (Extensions
that run on the iPhone)

• You can share data via NSUserDefaults

• Instead of NSUserDefaults.standardUserDefaults(),
use:  
 
NSUserDefaults(suiteName: "group.com.mycompany.myapp"]  
 
aka 
 
[NSUserDefauts initWithSuiteName: @“group.com.mycompany.myapp"] 
 
where group.com.mycompany.myapp is the id of an App Group

Setting up App Groups
• Go to developer.apple.com -> Certificates, Identifiers &

Profiles

• Create App IDs for the containing app and the extensions
and enable App Groups services for them:

• com.mycompany.myapp

• com.mycompany.myapp.myextension

• Then create an app group:

• group.com.mycompany.myapp

http://developer.apple.com

Associating App IDs with
App Groups

Setting up App Groups
(cont’d)

• In Xcode, enable App Groups for each target for
that will be sharing data between via the app group

Sharing Code
• To share code and resources

between targets, you can either:

Include the source file or resource in
each target you want it in

Create an embedded framework
that contains a single copy of your
code or resource

-OR-

Creating a new framework
• File -> New Target -> Framework & Library ->

Cocoa Touch Framework

Using your Framework
1. Add classes to your framework

2. Mark classes, methods and enumerations that you
want to expose as public

3. Add framework as Linked Framework to your target
(see next slide)

4. Import your framework with an import statement: 
  
import SampleKit 

Adding Framework to a
Target

Adding a File to Your
Framework

Access Control in Swift:
Terminology

• Module - A framework or application. Each build
target corresponds to a module.

• Source File - A single file of code in a module. Note
that a single file can contain multiple class
definitions etc.

Access Levels

• Public - An entity that can be accessed from
outside and inside a module

• Internal - An entity that can be accessed only
inside a module

• Private - An entity that can be accessed only
within its own source file

Access control: Syntax

 public class SomePublicClass {}
 internal class SomeInternalClass {}
 private class SomePrivateClass {}

 public var somePublicVariable = 0
 internal let someInternalConstant = 0
 private func somePrivateFunction() {}

Example

public class Sample {
 public func doSomething() {
 print("something")
 }
}

But: Frameworks are Tied to
an OS

So…

• You can use Frameworks to share code between a
Today Extension and an iOS app

• But you can’t use Frameworks to share code
between an iOS app and a Watch App

• You can still use Frameworks to share code across
apps

Watch Connectivity

Watch App, iPhone App

• Your iPhone app and your Apple Watch app often
need to share data and talk to one another

• In particular, this is important for apps or data that
are not saved in the cloud

WatchConnectivity
Framework

• Both iOS and WatchOS share the
WatchConnectivity framework

• Requires iOS 9 and WatchOS 2

• The majority of methods in the framework are found
on both iOS and WatchOS

• Some functionality has changed / been added in
iOS 9.3 / WatchOS 2.2 to allow multiple watches to
be paired with the same iPhone

2 Types of Transfers

Interactive messaging 
- For when you need the transfer to happen right away 
- Requires both the phone and watch to be reachable

Background transfers  
- For when you can afford to wait 
- WatchConnectivity batches transfers to save battery
life

WCSession

• Most of the functionality of the WatchConnectivity
framework is found in the WCSession class

• Both the iOS app and WatchOS app must maintain
their own WCSession object

Getting the Session

• Call WCSession.isSupported() on iPhone to
make sure that the iPhone is a model that can pair
with an Apple Watch. This method will always
return true on an Apple Watch.

• If so, you can access the session by calling
WCSession.defaultSession()

Activating the Session
• Before activating your session you must assign a
delegate that conforms to WCSessionDelegate

• Then you can call session.activateSession()

• After calling activateSession, your delegate will get a
callback on: 
 
optional func session(_ session: WCSession,  
activationDidCompleteWithState activationState:
WCSessionActivationState, error error: NSError?)

• activationState can be one of .NotActivated, .Inactive
and .Activated

https://developer.apple.com/library/prerelease/watchos/documentation/WatchConnectivity/Reference/WCSession_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSession
https://developer.apple.com/library/prerelease/watchos/documentation/WatchConnectivity/Reference/WCSession_class/index.html#//apple_ref/swift/enum/c:@E@WCSessionActivationState
https://developer.apple.com/library/prerelease/watchos/documentation/Cocoa/Reference/Foundation/Classes/NSError_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSError

Paired Device Information
(iOS only)

Once you have an activated session, you can call: 
 
paired - true if the iPhone is currently paired with an
Apple Watch

watchAppInstalled - true if the app is installed on the
Apple Watch 
 
complicationEnabled - true if the user has the watch
app’s complication enabled

true if the app’s complication is installed on the active watch
face

Reachability
reachable

true when other device is paired, in-range and has an
active session. iOS apps do not need to be in the
foreground but WatchOS apps do.

iOSDeviceNeedsUnlockAfterRebootForReachability

true if the user’s iPhone has not been unlocked yet since
rebooting. (WatchOS only)

Interactive Messaging

• The devices must be reachable

• One side sends with WCSession
sendMessage(_:replyHandler:errorHandler:)

• The other side receives with WCSessionDelegate
 

session(_:didReceiveMessage:)

Sending a Message
func sendMessage(_ message: [String : AnyObject], 
 replyHandler replyHandler: (([String : AnyObject]) -> Void)?, 
 errorHandler errorHandler: ((NSError) -> Void)?)

message and the reply are dictionaries of property list values.

Set the replyHandler to nil if you don’t want a reply.

The error handler is invoked if the device you are sending to is unreachable.

Messages are queued in order sent and sent asynchronously. Reply callbacks occur
serially on a background thread.

Sending to iOS wakes up the iOS app in the background, but sending to WatchOS
requires that the WatchOS app is in the foreground already.

https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:Ps9AnyObject
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:Ps9AnyObject
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_StandardLibrary_TypeAliases/index.html#//apple_ref/swift/tdef/s:s4Void
https://developer.apple.com/library/prerelease/ios/documentation/Cocoa/Reference/Foundation/Classes/NSError_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSError
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_StandardLibrary_TypeAliases/index.html#//apple_ref/swift/tdef/s:s4Void

Receiving a Message
If no reply is requested

optional func session(_ session: WCSession,  
 didReceiveMessage message: [String : AnyObject])

If a reply is requested

optional func session(_ session: WCSession,  
 didReceiveMessage message: [String : AnyObject],  
 replyHandler replyHandler: ([String :
AnyObject]) -> Void)

In this case, you must call replyHandler at some point.

Messages are received serially on an background thread.

https://developer.apple.com/library/prerelease/ios/documentation/WatchConnectivity/Reference/WCSession_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSession
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:Ps9AnyObject
https://developer.apple.com/library/prerelease/ios/documentation/WatchConnectivity/Reference/WCSession_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSession
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:Ps9AnyObject
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:Ps9AnyObject
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_StandardLibrary_TypeAliases/index.html#//apple_ref/swift/tdef/s:s4Void

Sending and Receiving Data

Same idea, but send NSData instead of a Dictionary.

func sendMessageData(_ data: NSData,  
 replyHandler replyHandler: ((NSData) -> Void)?, 
 errorHandler errorHandler: ((NSError) -> Void)?)

optional func session(_ session: WCSession,  
didReceiveMessageData messageData: NSData)

optional func session(_ session: WCSession,  
didReceiveMessageData messageData: NSData,  
 replyHandler replyHandler: (NSData) -> Void)

https://developer.apple.com/library/prerelease/ios/documentation/Cocoa/Reference/Foundation/Classes/NSData_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSData
https://developer.apple.com/library/prerelease/ios/documentation/Cocoa/Reference/Foundation/Classes/NSData_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSData
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_StandardLibrary_TypeAliases/index.html#//apple_ref/swift/tdef/s:s4Void
https://developer.apple.com/library/prerelease/ios/documentation/Cocoa/Reference/Foundation/Classes/NSError_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSError
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_StandardLibrary_TypeAliases/index.html#//apple_ref/swift/tdef/s:s4Void
https://developer.apple.com/library/prerelease/ios/documentation/WatchConnectivity/Reference/WCSession_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSession
https://developer.apple.com/library/prerelease/ios/documentation/Cocoa/Reference/Foundation/Classes/NSData_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSData
https://developer.apple.com/library/prerelease/ios/documentation/WatchConnectivity/Reference/WCSession_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSession
https://developer.apple.com/library/prerelease/ios/documentation/Cocoa/Reference/Foundation/Classes/NSData_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSData
https://developer.apple.com/library/prerelease/ios/documentation/Cocoa/Reference/Foundation/Classes/NSData_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSData
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_StandardLibrary_TypeAliases/index.html#//apple_ref/swift/tdef/s:s4Void

Types of Background
Transfers

Updating Application Context  
Only the latest context is received by the receiver; previous contexts are
overridden. Good for getting a head start on updating your interface with
frequently updated data. 
 
e.g. Show 5 most current emails or news stories

Transferring Property Lists  
Messages are queued in the order received.  
 
e.g. change a setting

Transferring Files  
Messages are queued in the order received.  
 
e.g. transfer a voice message

Updating Application
Context

Sender (WCSession)

do {
 try session.updateApplicationContext(applicationContext)
 } catch let error {
 throw error
 }
}

Receiver (WCSessionDelegate)

optional func session(_ session: WCSession,  
didReceiveApplicationContext applicationContext: [String : AnyObject])

https://developer.apple.com/library/prerelease/ios/documentation/WatchConnectivity/Reference/WCSession_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSession
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:Ps9AnyObject

Application Context
Properties (WCSession)

applicationContext
The latest application context sent

receivedApplicationContext
The latest application context received

Sending Property List Data

WCSession

func transferUserInfo(_ userInfo: [String : AnyObject]) -> WCSessionUserInfoTransfer

var outstandingUserInfoTransfers: [WCSessionUserInfoTransfer] { get }

WCSessionDelegate

optional func session(_ session: WCSession,  
didFinishUserInfoTransfer userInfoTransfer: WCSessionUserInfoTransfer,  
 error error: NSError?)

Transfers happen in the background and continue even if the app is suspended.

https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:Ps9AnyObject
https://developer.apple.com/library/prerelease/ios/documentation/WatchConnectivity/Reference/WCSessionUserInfoTransfer_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSessionUserInfoTransfer
https://developer.apple.com/library/prerelease/ios/documentation/WatchConnectivity/Reference/WCSession_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSession
https://developer.apple.com/library/prerelease/ios/documentation/WatchConnectivity/Reference/WCSessionUserInfoTransfer_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSessionUserInfoTransfer
https://developer.apple.com/library/prerelease/ios/documentation/Cocoa/Reference/Foundation/Classes/NSError_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSError

Receiving Property List Data

WCSessionDelegate

optional func session(_ session: WCSession,  
 didReceiveUserInfo userInfo: [String : AnyObject])

https://developer.apple.com/library/prerelease/ios/documentation/WatchConnectivity/Reference/WCSession_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSession
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:Ps9AnyObject

Monitoring User Info Transfers
with WCSessionUserInfoTransfer

userInfo 
The dictionary being sent

transferring 
true if the data has yet to be transferred completely.  
false if the transfer is complete.

cancel() 
cancels the transfer

Sending Complication Data

func transferCurrentComplicationUserInfo(_ userInfo: [String : AnyObject]) ->
WCSessionUserInfoTransfer

works like transferUserInfo except:

• Only used for transferring from iPhone to Apple Watch
• High priority, is sent right away
• Only one of these can be sent at a time; initiating a new one cancels the old one.

https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:Ps9AnyObject
https://developer.apple.com/library/prerelease/ios/documentation/WatchConnectivity/Reference/WCSessionUserInfoTransfer_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSessionUserInfoTransfer

Sending Files
WCSession

func transferFile(_ file: NSURL,  
 metadata metadata: [String : AnyObject]?) -> WCSessionFileTransfer

var outstandingFileTransfers: [WCSessionFileTransfer] { get }

WCSessionDelegate

optional func session(_ session: WCSession,  
didFinishFileTransfer fileTransfer: WCSessionFileTransfer,  
 error error: NSError?)

File URLs must be local to the sending device.  

Transfers happen in the background and continue even if the app is suspended.

https://developer.apple.com/library/prerelease/ios/documentation/Cocoa/Reference/Foundation/Classes/NSURL_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSURL
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:Ps9AnyObject
https://developer.apple.com/library/prerelease/ios/documentation/WatchConnectivity/Reference/WCSessionFileTransfer_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSessionFileTransfer
https://developer.apple.com/library/prerelease/ios/documentation/WatchConnectivity/Reference/WCSessionUserInfoTransfer_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSessionFileTransfer
https://developer.apple.com/library/prerelease/ios/documentation/WatchConnectivity/Reference/WCSession_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSession
https://developer.apple.com/library/prerelease/ios/documentation/WatchConnectivity/Reference/WCSessionFileTransfer_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSessionFileTransfer
https://developer.apple.com/library/prerelease/ios/documentation/Cocoa/Reference/Foundation/Classes/NSError_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSError

Receiving Files

WCSessionDelegate

optional func session(_ session: WCSession,  
 didReceiveFile file: WCSessionFile)

https://developer.apple.com/library/prerelease/ios/documentation/WatchConnectivity/Reference/WCSession_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSession
https://developer.apple.com/library/prerelease/ios/documentation/WatchConnectivity/Reference/WCSessionFile_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSessionFile

WCSessionFile

fileURL: NSURL
The temporary URL of the file has been transferred. You must transfer the
file to a permanent directory before session:didReceiveFile:
returns.

metadata: [String : AnyObject]?
The optional dictionary of property list values sent with the file

https://developer.apple.com/library/watchos/documentation/Cocoa/Reference/Foundation/Classes/NSURL_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSURL
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:PSs9AnyObject

Monitoring User Info Transfers
with WCSessionFileTransfer

file 
The WCSessionFile being sent

transferring 
true if the data has yet to be transferred completely.  
false if the transfer is complete.

cancel() 
cancels the transfer

https://developer.apple.com/library/watchos/documentation/WatchConnectivity/Reference/WCSessionFile_class/index.html#//apple_ref/swift/cl/c:objc(cs)WCSessionFile

