
SpriteKit
CS193W - Spring 2016 - Lecture 9

SpriteKit

• A framework for creating 2D games on iOS and
tvOS

• Can be used in conjunction with UIKit

• There is an analogous framework called SceneKit
for creating 3D games

SKTexture

Rather than use UIImages, in SpriteKit you use SKTextures.

init(imageNamed name: String)

This will look for images with the given name in the same way that UIImage does. If it does
not find an image, it will look for the image in any available texture atlases.

You create a texture atlas by creating a folder with an .atlas extension in your project and
placing images into it.

Using a texture atlas is more efficient than using individual images, both computationally
and due to memory usage.

https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS

Texture Altases
• When loaded into memory, images are always

padded to be a factor of 2 in size. (i.e. 512x512
pixels.)

• In a texture atlas, padding is stripped away and
several images are combined into one.

• In addition to the space savings, the renderer can
combine passes if images are in the same texture
atlas, speeding things up.

Basic Concepts

• A SpriteKit scene consists of nodes, which
represent sprites and other game elements

• Actions are run on nodes to animate them and
otherwise modify them

SKNode and its Subclasses

SKNode 
 SKSpriteNode 
 SKLabelNode 
 SKShapeNode 
 SKVideoNode 
 SKLightNode 
 SKCameraNode

 and few more…

SKSpriteNode
• sprite - a computer graphic that may be moved on-

screen and otherwise manipulated as a single
entity.

• A sprite can be given an appearance via a
SKTexture 

init(texture texture: SKTexture?) 
 
For convenience, you can create the texture implicitly and just call:

init(imageNamed name: String)

https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKTexture_Ref/index.html#//apple_ref/swift/cl/c:objc(cs)SKTexture
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS

SKLabelNode

• Can be used to make a node with a single line of
text

• Can set the text, font, alignment, color, etc.

SKShapeNode

• Can be used to create nodes that are circles,
squares, eclipses, or defined by arbitrary paths

• Lower performance than SKSpriteNode though, so
use SKSpriteNodes if you can.

SKVideoNode

• A node that plays a video

SKNode
• The superclass of SKSpriteNode, SKLabelNode, etc.

• All nodes have the following modifiable properties:

• position - the (x,y) position in the parent node’s coordinate system 
 
zPosition - the z position in the parent node’s coordinate system (higher z-
values are on top of lower ones) 
 
xScale - a multiplier to the node’s width 
yScale - a multiplier to the node’s height 
 
zRotation - a rotation angle (in radians) 
 
alpha - the transparency of the node 
 
hidden - true / false

Grouping with SKNode

• SKNode has no visual rendering, but can often be
used to group together child nodes

• e.g. an avatar might be composed of several sprite
nodes (body, head, weapon, etc.) all of which are
children of the same SKNode

Nodes and their Children

func addChild(_ node: SKNode)

func removeFromParent()

func removeAllChildren()

var parent: SKNode ? { get }

var children: [SKNode] { get }

Node Names

• Nodes can be assigned names. The names can be
unique or not.

• You can use childNodeWithName or
enumerateChildNodesWithName(_:usingBlo
ck:) to access the child(ren) with a given name

SKAction
• Actions can be run by nodes to change their

properties

• For example: 
 
class func scaleBy(_ scale: CGFloat,  
 duration sec: NSTimeInterval) -> SKAction 
 
is used to animate the scale of a node over a
number of seconds.

https://developer.apple.com/library/tvos/documentation/Cocoa/Reference/Foundation/Miscellaneous/Foundation_DataTypes/index.html#//apple_ref/swift/tdef/c:@T@NSTimeInterval

A sampling of SKActions

moveBy(_:duration:)
moveTo(_:duration:)

rotateByAngle(_:duration:)
rotateToAngle(_:duration:)

scaleBy(_:duration:)
scaleTo(_:duration:)

unhide()
hide()  

fadeInWithDuration(_:)
fadeOutWithDuration(_:)

Reversing Actions

func reversedAction() -> SKAction

Note: not all actions can be reserved, see the
documentation

Repeating Actions

You can run an action multiple times or forever

class func repeatAction(_ action: SKAction,  
 count count: Int) -> SKAction

class func repeatActionForever(_ action: SKAction) -> SKAction

https://developer.apple.com/library/tvos/documentation/Swift/Reference/Swift_Int_Structure/index.html#//apple_ref/swift/struct/s:Si

Sequencing Actions
You can create a composite action composed of
executing several actions in sequence

class func sequence(_ actions: [SKAction]) -> SKAction

To pause between actions create a wait action:

class func waitForDuration(_ sec: NSTimeInterval) ->
SKAction

https://developer.apple.com/library/tvos/documentation/Cocoa/Reference/Foundation/Miscellaneous/Foundation_DataTypes/index.html#//apple_ref/swift/tdef/c:@T@NSTimeInterval

Grouping Actions

You can also run actions in parallel by creating
groups:  
 
class func group(_ actions: [SKAction]) -> SKAction

Custom Actions

You can run arbitrary code as part of an action:

class func runBlock(_ block: dispatch_block_t) -> SKAction

SKScene

• Controls the rendering of the graphics in the
SKView that presented the SKScene

• An SKScene consists of SKNodes, of which the
SKScene is the root node.

• You subclass SKScene to create new scenes

SKScene Loop  
(Once per frame)

1 The scene calls its update: method.

2 The scene executes actions on its children.

3 The scene calls its didEvaluateActions method.

4 The scene executes any physics simulations on physics bodies in the scene.

5 The scene calls its didSimulatePhysics method.

6 The scene applies any constraints associated with nodes in the scene.

7 The scene calls its didApplyConstraints method.

8 The scene calls its didFinishUpdate method.

9 The scene renders all of its nodes and updates the view to display the new contents

SKView

• A subclass of UIView

• Has a bunch of properties, but we’ll ignore these
for now

• All we care about it is the method presentScene,
which takes a SKScene

Creating a SpriteKit Project
File -> New -> Project…

Autogenerated Code
class GameViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 if let scene = GameScene(fileNamed: "GameScene") {
 // Configure the view.
 let skView = self.view as! SKView
 skView.showsFPS = true
 skView.showsNodeCount = true

 /* Sprite Kit applies additional optimizations to improve rendering performance */
 skView.ignoresSiblingOrder = true

 /* Set the scale mode to scale to fit the window */
 scene.scaleMode = .AspectFill

 skView.presentScene(scene)
 }
 }

More Autogenerated Code
class GameScene: SKScene {
 override func didMoveToView(view: SKView) {
 /* Setup your scene here */
 let myLabel = SKLabelNode(fontNamed:"Chalkduster")
 myLabel.text = "Hello, World!"
 myLabel.fontSize = 65
 myLabel.position = CGPoint(x:CGRectGetMidX(self.frame), y:CGRectGetMidY(self.frame))

 self.addChild(myLabel)
 }

 override func update(currentTime: CFTimeInterval) {
 /* Called before each frame is rendered */
 }

 override func touchesBegan(touches: Set<UITouch>, withEvent event: UIEvent?) {
 /* Called when a touch begins */

 for touch in touches {
 let location = touch.locationInNode(self)

 let sprite = SKSpriteNode(imageNamed:"Spaceship")

 sprite.xScale = 0.5
 sprite.yScale = 0.5
 sprite.position = location

 let action = SKAction.rotateByAngle(CGFloat(M_PI), duration:1)

 sprite.runAction(SKAction.repeatActionForever(action))

 self.addChild(sprite)
 }
 }

}

Let’s change touchesBegan
to touchesEnded

class GameScene: SKScene {
 override func didMoveToView(view: SKView) {
 /* Setup your scene here */
 let myLabel = SKLabelNode(fontNamed:"Chalkduster")
 myLabel.text = "Hello, World!"
 myLabel.fontSize = 65
 myLabel.position = CGPoint(x:CGRectGetMidX(self.frame), y:CGRectGetMidY(self.frame))

myLabel.name = "helloLabel"

 self.addChild(myLabel)
 }

 override func update(currentTime: CFTimeInterval) {
 /* Called before each frame is rendered */
 }

 override func touchesEnded(touches: Set<UITouch>, withEvent event: UIEvent?) {
 /* Called when a touch ends */

 for touch in touches {
 let location = touch.locationInNode(self)

 let sprite = SKSpriteNode(imageNamed:"Spaceship")

 sprite.xScale = 0.5
 sprite.yScale = 0.5
 sprite.position = location

 let action = SKAction.rotateByAngle(CGFloat(M_PI), duration:1)

 sprite.runAction(SKAction.repeatActionForever(action))

 self.addChild(sprite)
 }
 }

}

After a few touches

The SpriteKit Scene Editor

• Recall the line:  
 
scene = GameScene(fileNamed: “GameScene”)

• This refers to a file called GameScene.sks

• Great for creating levels where the positioning of the
objects and bad guys changes from level to level

Using the Editor

Using the Editor

Using the Editor

Simulating Physics

• In addition to applying actions to nodes, you can
define physical characteristics of nodes and
simulate their interactions

• Nodes can have shape, mass, density, velocity,
etc.

SKPhysicsBody
• To give a node physical properties, assign its
physicsBody property a SKPhysicsBody object

• Physics bodies are dynamic by default, meaning
they are affected by the physical simulation. Static
bodies (i.e. dynamic = false) are stationary but
do interact with dynamic bodies. Good for e.g.
walls in a maze.

• There are two types of Physics bodies - volumes
and edges. Edges are static and are infinitely thin.

Defining Physics Bodies
Volume-based bodies

 init(circleOfRadius:)  
 
init(rectangleOfSize:)

 
init(polygonFromPath:) 

Edge-based bodies

 init(edgeLoopFromRect:)  
  
init(edgeFromPoint:toPoint:)  
 
init(edgeLoopFromPath:)  
 
init(edgeChainFromPath:)

Making the Screen Edge a
Physical Boundary

[SKPhysicsBody bodyWithEdgeLoopFromRect:self.frame];

Physical Properties
var mass: CGFloat 

The mass of the body in Kilograms. The default is the area of the object times the density.

var density: CGFloat 

The density of the object in Kilograms per square meters. The default is 1.0.

var friction: CGFloat

A value between 0 and 1, used to apply a frictional force to objects that are in contact with the body. The default is
0.2.

var restitution: CGFloat

A value between 0 and 1, used to determine how much energy the body loses when it bounces off another object.
The default is 0.2.

var linearDamping: CGFloat

A value between 0 and 1, used to simulate air or fluid resistance. The default is 0.1.

Some Important Properties

var affectedByGravity: Bool

var allowsRotation: Bool

var dynamic: Bool

https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_Bool_Structure/index.html#//apple_ref/swift/struct/s:Sb
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_Bool_Structure/index.html#//apple_ref/swift/struct/s:Sb
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_Bool_Structure/index.html#//apple_ref/swift/struct/s:Sb

Applying Force

func applyForce(_ force: CGVector)

Applies force in both the x and y directions.

func applyTorque(_ torque: CGFloat)

Applies torque (rotational velocity).

https://developer.apple.com/library/ios/documentation/GraphicsImaging/Reference/CGGeometry/index.html#//apple_ref/swift/struct/c:@S@CGVector

Contacts and Collisions

• When two physics bodies touch, they can either
collide (and interact) with each other and/or trigger
a contact (and create an event)

• You specify groups of physics bodies and specify
which bodies can contact / collide with other
bodies

Bitmasks
• You can define up to 32 categories of objects using

bit masks 

var categoryBitMask: UInt32

The categories of this SKPhysicsNode (default 0xFFFFFFFF)

var collisionBitMask: UInt32 
 
The categories this body can collide with (default 0xFFFFFFFF)

var contactTestBitMask: UInt32

The categories this body can contact (default 0x00000000)

https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_UInt32_Structure/index.html#//apple_ref/swift/struct/s:Vs6UInt32
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_UInt32_Structure/index.html#//apple_ref/swift/struct/s:Vs6UInt32
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_UInt32_Structure/index.html#//apple_ref/swift/struct/s:Vs6UInt32

Contact Callbacks

• Assign the physicsWorld.contactDelegate
property of an SKScene object to a
SKPhysicsContactDelegate.

• Then implement the callbacks:  
 
didBeginContact(_ contact: SKPhysicsContact)  
didEndContact(_ contact: SKPhysicsContact)

https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKScene_Ref/index.html#//apple_ref/occ/instm/SKScene/physicsWorld
https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKPhysicsWorld_Ref/index.html#//apple_ref/occ/instm/SKPhysicsWorld/contactDelegate
https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKScene_Ref/index.html#//apple_ref/occ/cl/SKScene
https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKScene_Ref/index.html#//apple_ref/occ/cl/SKScene
https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKPhysicsContact/index.html#//apple_ref/swift/cl/c:objc(cs)SKPhysicsContact
https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKPhysicsContact/index.html#//apple_ref/swift/cl/c:objc(cs)SKPhysicsContact

That’s the basics

• There’s more to know of course, but that should be
enough to get you started!

